Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.
نویسندگان
چکیده
Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.
منابع مشابه
Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma.
Poly(ADP-ribose) polymerase (PARP) inhibitors enhance the antitumor activity of the topoisomerase I inhibitor irinotecan (CPT-11), which is used to treat advanced colorectal carcinoma. Since PARP inhibitors sensitize tumor cells also to the methylating agent temozolomide (TMZ) and clinical trials are evaluating CPT-11 in combination with TMZ, we tested whether the PARP inhibitor GPI 15427 (10-(...
متن کاملChemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear zinc finger DNA-binding protein that is implicated in the repair of DNA damage. Inhibition of PARP-1 through genetic knockouts causes cells to become hypersensitive to various chemotherapeutic agents. We tested the chemopotentiating ability of the PARP-1 inhibitor, CEP-6800, when used in combination with temozolomide (TMZ), irinotecan (camptot...
متن کاملThe selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity.
The effect of the potent and selective poly(ADP-ribose) (PAR) polymerase-1 [and PAR polymerase-2] inhibitor CEP-8983 on the ability to sensitize chemoresistant glioblastoma (RG2), rhabdomyosarcoma (RH18), neuroblastoma (NB1691), and colon carcinoma (HT29) tumor cells to temozolomide- and camptothecin-induced cytotoxicity, DNA damage, and G(2)-M arrest and on the potentiation of chemotherapy-ind...
متن کاملNovel Poly(Adenosine Diphosphate-Ribose) Polymerase (PARP) Inhibitor, AZD2461, Down-Regulates VEGF and Induces Apoptosis in Prostate Cancer Cells
Background: Prostate cancer (Pca) is a heterogeneous disease, and current treatments are not based on molecular stratification. Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors have recently been found to be remarkably toxic to cells with defects in homologous recombination, particularly cells with BRCA-mutated backgrounds. Therefore, this preliminary study was designed to ...
متن کاملCommon fragile sites in colon cancer cell lines: role of mismatch repair, RAD51 and poly(ADP-ribose) polymerase-1.
Common fragile sites (CFS) are specific chromosomal areas prone to form gaps and breaks when cells are exposed to stresses that affect DNA synthesis, such as exposure to aphidicolin (APC), an inhibitor of DNA polymerases. The APC-induced DNA damage is repaired primarily by homologous recombination (HR), and RAD51, one of the key players in HR, participates to CFS stability. Since another DNA re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2013